You can use the idea that like charges repel (like two electrons) and opposites attract to move stuff around, stick to walls, float, spin, and roll. Make sure you do this experiment first.


I’ve got two different videos that use positive and negative charges to make things rotate, the first of which is more of a demonstration (unless you happen to have a 50,000 Volt electrostatic generator on hand), and the second is a homemade version on a smaller scale.


Did you know that you can make a motor turn using static electricity? Here’s how:


[am4show have=’p8;p9;p20;p47;p76;p97;p58;’ guest_error=’Guest error message’ user_error=’User error message’ ]



Download Student Worksheet & Exercises


Here’s how the electrostatic machine works – you will need:


  • a yardstick
  • spoon
  • balloon


How does it work? Different parts of the atom have different electrical charges. The proton has a positive charge, the neutron has no charge (neutron, neutral get it?) and the electron has a negative charge. These charges repel and attract one another kind of like magnets repel or attract. Like charges repel (push away) one another and unlike charges attract one another.


So if two items that are both negatively charged get close to one another, the two items will try to get away from one another. If two items are both positively charged, they will try to get away from one another. If one item is positive and the other negative, they will try to come together.


How do things get charged? Generally things are neutrally charged. They aren’t very positive or negative. However, occasionally (or on purpose as we’ll see later) things can gain a charge. Things get charged when electrons move. Electrons are negatively charged particles. So if an object has more electrons than it usually does, that object would have a negative charge. If an object has less electrons than protons (positive charges), it would have a positive charge.


How do electrons move? It turns out that electrons can be kind of loosey-goosey. Depending on the type of atom they are a part of, they are quite willing to jump ship and go somewhere else. The way to get them to jump ship is to rub things together.


Remember, in static electricity, electrons are negatively charged and they can move from one object to another. This movement of electrons can create a positive charge (if something has too few electrons) or a negative charge (if something has too many electrons). It turns out that electrons will also move around inside an object without necessarily leaving the object. When this happens the object is said to have a temporary charge.


Try this: Blow up a balloon. When you rub the balloon on your head, the balloon is now filled up with extra electrons, and now has a negative charge. Now stick it to a wall— to create a temporary charge on a wall.


Opposite charges attract right? So, is the entire wall now an opposite charge from the balloon? No. In fact, the wall is not charged at all. It is neutral. So why did the balloon stick to it?


The balloon is negatively charged. It created a temporary positive charge when it got close to the wall. As the balloon gets closer to the wall, it repels the electrons in the wall. The negatively charged electrons in the wall are repelled from the negatively charged electrons in the balloon.


Since the electrons are repelled, what is left behind? Positive charges. The section of wall that has had its electrons repelled is now left positively charged. The negatively charged balloon will now “stick” to the positively charged wall. The wall is temporarily charged because once you move the balloon away, the electrons will go back to where they were and there will no longer be a charge on that part of the wall.


This is why plastic wrap, Styrofoam packing popcorn, and socks right out of the dryer stick to things. All those things have charges and can create temporary charges on things they get close to.


Want to purchase an electrostatic machine? Here’s a link to the one used in the video called a Wimshurst Machine which makes sparks up to 4″ long. For younger kids, we recommend this fun hand-held, non-shocking electrostatic generator.


Exercises


  1.  What happens if you rub the balloon on other things, like a wool sweater?
  2.  If you position other people with charged balloons around the table, how long can you keep  the yardstick going
  3.  Can we see electrons?
  4.  How do you get rid of extra electrons?
  5.  Why do you think the yardstick moved?
  6.  What would happen if you use both a positively charged object and a negatively charged  object to make the yardstick move?

[/am4show]


fet1This simple FET circuit is really an electronic version of the electroscope. This “Alien Detector” is a super-sensitive static charge detector made from a few electronics parts. I originally made a few of these and placed them in soap boxes and nailed the lids shut and asked kids how they worked. (I did place a on/off switch poking through the box along with the LED so they would have ‘some’ control over the experiment.)


This detector is so sensitive that you can go around your house and find pockets of static charge… even from your own footprints! This is an advanced project for advanced students.


You will need to get:


[am4show have=’p9;p47;p76;p103;p58;’ guest_error=’Guest error message’ user_error=’User error message’ ]



Download Student Worksheet & Exercises


After you’ve made your charge detector, turn it on and comb your hair, holding the charge detector near your head and then the comb. You’ll notice that the comb makes the LED turn off, and your head (in certain spots) makes the LED go on. So it’s a positive charge static detector… this is important, because now you know when the LED is off, the space you’re detecting is negatively charged, and when it’s lit up, you’re in a pocket of positively charged particles. How far from the comb does your detector need to be to detect the charge? Does it matter how humid it is?


You can take your detector outdoors, away from any standing objects like trees, buildings, and people, and hold it high in the air. What does the LED look like? What happens when you lower the detector closer to the ground? Raise it back up again to get a second reading… did you find that the earth is negative, and the sky is more positive?


You can increase the antenna sensitivity by dangling an extra wire (like an alligator clip lead) to the end of the antenna. Because thunderstorms are moving electrical charges around (negative charges downwards and positive charges upwards), the earth is electrified negatively everywhere. During a thunderstorm, the friction caused by the moving water molecules is what causes lightning to strike! (But don’t test your ideas outside in the wide open while lightening is striking!)


Exercises


  1. When the LED is on, what do you think it means?
  2. Does the LED turning off detect anything?
  3. Do aliens like humidity?
  4. How does this alien detector really work?

[/am4show]


Hovercraft transport people and their stuff across ice, grass, swamp, water, and land. Also known as the Air Cushioned Vehicle (ACV), these machines use air to greatly reduce the sliding friction between the bottom of the vehicle (the skirt) and the ground. This is a great example of how lubrication works – most people think of oil as the only way to reduce sliding friction, but gases work well if done right.

In this case, the readily-available air is shoved downward by the pressure inside of balloon. This air flows down through the nozzle and out the bottom, under the CD, lifting it slightly as it goes and creating a thin layer for the CD to float on.

Although this particular hovercraft only has a 'hovering' option, I'm sure you can quickly figure out how to add a 'thruster' to make it zoom down the table! (Hint - you will need to add a second balloon!)

Here's what you need:

[am4show have='p8;p9;p10;p37;p151;p92;' guest_error='Guest error message' user_error='User error message' ]
  • 7-9" balloon
  • water bottle with a sport-top (see video for a visual - you can also use the top from liquid dish soap)
  • old CD
  • paper cup (or index card)
  • thumbtack
  • hot glue gun
  • razor with adult help




Download Student Worksheet here.

There's air surrounding us everywhere, all at the same pressure of 14.7 pounds per square inch (psi). You feel the same force on your skin whether you're on the ceiling or the floor, under the bed or in the shower. An interesting thing happens when you change a pocket of air pressure - things start to move.

This difference in pressure causes movement that creates winds, tornadoes, airplanes to fly, and the air to rush out of a full balloon. An important thing to remember is that higher pressure always pushes stuff around. While lower pressure does not "pull," we think of higher pressure as a "push".

The stretchy balloon has a higher pressure inside than the surrounding air, and the air is allowed to escape out the nozzle which is attached to the water bottle cap through tiny holes (so the whole balloon doesn't empty out all at once and flip over your hovercraft!) The steady stream of air flows under the CD and creates a cushion of air, raising the whole hovercraft up slightly... which makes the hovercraft easy to slide across a flat table.

Want to make an advanced model Hovercraft using wires, motors, and leftovers from lunch? Then click here.

[/am4show] [am4show have='p9;p39;' guest_error='Guest error message' user_error='User error message' ] Advanced students: Download your Hovercraft Lab here. [/am4show]

Polarization has to do with the direction of the light.  Think of a white picket fence – the kind that has space between each board.  The light can pass through the gaps int the fence but are blocked by the boards.  That’s exactly what a polarizer does.


When you have two polarizers, you can rotate one of the ‘fences’ a quarter turn so that virtually no light can get through – only little bits here and there where the gaps line up. Most of the way is blocked, though, which is what happens when you rotate the two pairs of sunglasses. Your sunglasses are polarizing filters, meaning that they only let light of a certain direction in. The view through the sunglasses is a bit dimmer, as less photons reach your eyeball.


Polarizing sunglasses also reduce darken the sky, which gives you more contrast between light and dark, sharpening the images. Photographers use polarizing filters to cut out glaring reflections.


Materials:


  • two pairs of polarized sunglasses
  • tape (the 3/4″ glossy clear kind works best – watch second video below)
  • window

[am4show have=’p8;p9;p19;p46;p105;p89;’ guest_error=’Guest error message’ user_error=’User error message’ ]



Here’s what you do: Stack two pairs of sunglasses on top of each other and look through both sets of lenses… now rotate one pair a quarter turn (90o).  The lenses should block the light completely at 90o and allow light to pass-through when aligned at 0o. These lenses allow some light to pass through but not all. When you rotate the lenses to 90o, you block out all visible light.


You use the “filter” principle in the kitchen. When you cook pasta, you use a filter (a strainer) to get the pasta out of the water. That’s what the sunglasses are doing – they are filtering out certain types of light. Rotating the lenses 90o to block out all light is like trying to strain your pasta with a mixing bowl. You don’t allow anything to pass through.


Astronomers use polarizing filters to look at the moon. Ever notice how bright the moon is during a full moon, and how dim it is near new moon? Using a rotating polarizing filter, astronomer can adjust the amount of light that enters into their eye.



 
Download Student Worksheet & Exercises


Advanced students: Download your Polarization lab here.


Exercises


  1. Why do you need two polarizers to block the light completely?
  2.  How can you tell if your sunglasses are polarized if you only have one pair?

[/am4show]


Crazy Remote

Want to have some quick science fun with your TV remote? Then try this experiment next time you flip on the tube:


Materials:


  • metal frying pan or cookie sheet
  • TV remote control
  • plastic sheet

[am4show have=’p8;p9;p19;p46;p66;p89;’ guest_error=’Guest error message’ user_error=’User error message’ ]




 


Making IR Visible to the Human Eye

Infra-red light is in the part of the electromagnetic spectrum that isn’t usually visible to human eyes, but using this nifty trick, you will easily be able to see the IR signal from your TV remote, remote-controller for an RC car, and more!


  • TV remote control
  • camera (video or still camera)



 
Download Student Worksheet & Exercises


Exercises


  1. Look over your data table. What kinds of objects (plastic, metal, natural, etc.) allow infrared light to pass through them?
  2.  Why does the camera work in making the infrared light visible?

[/am4show]