Sound can change according to the speed at which it travels. Another word for sound speed is pitch. When the sound speed slows, the pitch lowers. With clarinet reeds, it’s high. Guitar strings can do both, as they are adjustable. If you look carefully, you can actually see the low pitch strings vibrate back and forth, but the high pitch strings move so quickly it’s hard to see. But you can detect the effects of both with your ears.
[am4show have=’p8;p9;p16;p43;p64;p100;’ guest_error=’Guest error message’ user_error=’User error message’ ]
The range of your ears is about 20 – 20,000 Hz (cycles per second). Bats and dogs can hear a lot higher than we can. The image (right) is a real picture of an aircraft as it breaks the sound barrier – meaning that the aircraft is passing the speed that sounds travels at (about 700 mph). The white cloud you see in the photo is related to the shock waves that are forming around the craft as it moves into supersonic speeds. You can think of a shock wave as big pressure front, which creates clouds. In this photo, the pressure from the shock waves is condensing the water vapor in the air.
There are lots of things on earth that break the sound barrier – bullets and bullwhips, for example. The loud crack from a whip is the tip zipping faster than the speed of sound.
So why do we hear a boom at all? Sonic booms are created by air pressure (think of how the water collects at the bow of a boat as it travels through the water). The vehicle pushes air molecules aside in such a way they are compressed to the point where shock waves are formed. These shock waves form two cones, at the nose and tail of the plane. The shock waves move outward and rearward in all directions and usually extend to the ground.
As the shock cones spread across the landscape along the flightpath, they create a continuous sonic boom. The sharp release of pressure, after the buildup by the shock wave, is heard as the sonic boom.
How to Make an Air Horn
Let’s learn how to make loud sonic waves… by making an air horn. Your air horn is a loud example of how sound waves travel through the air. To make an air horn, poke a hole large enough to insert a straw into the bottom end of a black Kodak film canister. (We used the pointy tip of a wooden skewer, but a drill can work also.) Before you insert the straw, poke a second hole in the side of the canister, about halfway up the side.
Here’s what you need:
- 7-9″ balloon
- straw
- film canister
- drill and drill bits
Grab an un-inflated balloon and place it on your table. See how there are two layers of rubber (the top surface and the bottom surface)? Cut the neck off a balloon and slice it along one of the folded edges (still un-inflated!) so that it now lays in a flat, rubber sheet on your table.
Drape the balloon sheet over the open end of the film canister and snap the lid on top, making sure there’s a good seal (meaning that the balloon is stretched over the entire opening – no gaps). Insert the straw through the bottom end, and blow through the middle hole (in the side of the canister).
You’ll need to play with this a bit to get it right, but it’s worth it! The straw needs to *just* touch the balloon surface inside the canister and at the right angle, so take a deep breath and gently wiggle the straw around until you get a BIG sound. If you’re good enough, you should be able to get two or three harmonics!
Download Student Worksheet & Exercises
Troubleshooting: Instead of a rubber band vibrating to make sound, a rubber sheet (in the form of a cut-up balloon) vibrates, and the vibration (sound) shoots out the straw. This is one of the pickiest experiments – meaning that it will take practice for your child to make a sound using this device. The straw needs to barely touch the inside surface of the balloon at just the right angle in order for the balloon to vibrate. Make sure you’re blowing through the hole in the side, not through the straw (although you will be able to make sounds out of both attempts).
Here’s a quick video where you can hear the small sonic boom from a bull whip:
Since most of us don’t have bull whips, might I recommend a twisted wet towel? Just be sure to practice on a fence post, NOT a person!
Exercises
- Why do we use a straw with this experiment?
- Does the length of the straw matter? What will affect the pitch of this instrument?
[/am4show]

If your mom’s worried about making a mess with water (and it’s not bath night tonight) then try this alternate experiment: you’ll need a mixing bowl, wooden spoon, and rubber bands.
This is the experiment that all kids know about… if you haven’t done this one already, put it on your list of fun things to do. (See the tips & tricks at the bottom for further ideas!)
This experiment is just for advanced students. Ernst Florens Friedrich Chladni (1756-1827) is considered to be the ‘father of acoustics’. He was fascinated by vibrating things like plates and gases, and his experiments resulted in two new musical instruments to be developed.
Alexander Graham Bell developed the telegraph, microphone, and telephone back in the late 1800s. We'll be talking about electromagnetism in a later unit, but we're going to cover a few basics here so you can understand how loudspeakers transform an electrical signal into sound.
Sound is everywhere. It can travel through solids, liquids, and gases, but it does so at different speeds. It can rustle through trees at 770 MPH (miles per hour), echo through the ocean at 3,270 MPH, and resonate through solid rock at 8,600 MPH.