This experiment is just for advanced students. If you guessed that this has to do with electricity and chemistry, you’re right! But you might wonder how they work together. Back in 1800, William Nicholson and Johann Ritter were the first ones to split water into hydrogen and oxygen using electrolysis. (Soon afterward, Ritter went on to figure out electroplating.) They added energy in the form of an electric current into a cup of water and captured the bubbles forming into two separate cups, one for hydrogen and other for oxygen.

This experiment is not an easy one, so feel free to skip it if you need to. You don’t need to do this to get the concepts of this lesson but it’s such a neat and classical experiment (my students love it) so you can give it a try if you want to. The reason I like this is because what you are really doing in this experiment is ripping molecules apart and then later crashing them back together.

Have fun and please follow the directions carefully. This could be dangerous if you’re not careful. The image shown here is using graphite from two pencils sharpened on both ends, but the instructions below use wire.  Feel free to try both to see which types of electrodes provide the best results.

[am4show have='p9;p40;p76;p91;p58;' guest_error='Guest error message' user_error='User error message' ]

You will need:

  • 2 test tubes or thin glass or plastic something closed at one end. I do not recommend anything wider than a half inch in diameter.
  • 2 two wires, one needs to be copper, at least 12 inches long. Both wires need to have bare ends.
  • 1 Cup
  • Water
  • One 9 volt battery
  • Long match or a long thin piece of wood (like a popsicle stick) and a match
  • Rubber bands
  • Masking tape
  • Salt

Download Student Worksheet & Exercises
1. Fill the cup with water.

2. Put a tablespoon or so of salt into the water and stir it up. (The salt allows the electricity to flow better through the water.)

2. Put one wire into the test tube and rubber band it to the test tube so that it won’t come out (see picture).

3. Use the masking tape to attach both wires to the battery. Make sure the wire that is in the test tube is connected to the negative (-) pole of the battery and that the other is connected to the positive (+) pole. Don’t let the bare parts of the different wires touch. They could get very hot if they do.

4. Fill the test tube to the brim with the salt water.

5. This is the tricky part. Put your finger over the test tube, turn it over and put the test tube, open side down, into the cup of water. (See picture.)

6. Now put the other wire into the water. Be careful not to let the bare parts of the wires touch.

7. You should see bubbles rising into the test tube. If you don’t see bubbles, check the other wire. If bubbles are coming from the other wire either switch the wires on the battery connections or put the wire that is bubbling into the test tube and remove the other. If you see no bubbles check the connections on the battery.

8. When the test tube is half full of gas (half empty of salt water depending on how you look at it) light the long match or the wooden stick. Then take the test tube out of the water and let the water drain out. Holding the test tube with the open end down, wait for five seconds and put the burning stick deep into the test tube (the flame will probably go out but that’s okay). You should hear an instant pop and see a flash of light. If you don’t, light the stick again and try it another time. For some reason, it rarely works the first time but usually does the second or third.

A water molecule, as you saw before, is two hydrogen atoms and one oxygen atom. The electricity encouraged the oxygen to react with the copper wire leaving the hydrogen atoms with no oxygen atom to hang onto. The bubbles you saw were caused by the newly released hydrogen atoms floating through the test tube in the form of hydrogen gas. Eventually that test tube was part way filled with nothing but pure hydrogen gas.

But how do you know which bubbles are which? You can tell the difference between the two by the way they ignite (don’t’ worry – you’re only making a tiny bit of each one, so this experiment is completely safe to do with a grown up).

It takes energy to split a water molecule. (On the flip side, when you combine oxygen and hydrogen together, it makes water and a puff of energy. That’s what a fuel cell does.) Back to splitting the water molecule - as the electricity zips through your wires, the water molecule breaks apart into smaller pieces: hydrogen ions (positively charged hydrogen) and oxygen ions (negatively charged oxygen). Remember that a battery has a plus and a minus charge to it, and that positive and negative attract each other.

So, the positive hydrogen ions zip over to the negative terminal and form tiny bubbles right on the wire. Same thing happens on the positive battery wire. After a bit of time, the ions form a larger gas bubble. If you stick a cup over each wire, you can capture the bubbles and when you’re ready, ignite each to verify which is which.

If the match burns brighter, the gas is oxygen. If you hear a POP!, the gas is hydrogen. Oxygen itself is not flammable, so you need a fuel in addition to the oxygen for a flame. In one case, the fuel is hydrogen, and hence you hear a pop as it ignites. In the other case, the fuel is the match itself, and the flame glows brighter with the addition of more oxygen.

When you put the match to it, the energy of the heat causes the hydrogen to react with the oxygen in the air and “POP”, hydrogen and oxygen combine to form what? That’s right, more water. You have destroyed and created water! (It’s a very small amount of water so you probably won’t see much change in the test tube.)

The chemical equations going on during this electrolysis process look like this:

A reduction reaction is happening at the negatively charged cathode. Electrons from the cathode are sticking to the hydrogen cations to form hydrogen gas:

2 H+(aq) + 2e- --> H2(g)

2 H2O(l) + 2e- --> H2(g) + 2 OH-(aq)

The oxidation reaction is occurring at the positively charged anode as oxygen is being generated:

2 H2O(l)  --> O2(g) + 4 H+(aq) + 4e-

4 OH-(aq) --> O2(g) + 2 H2O(l) + 4 e-

Overall reaction:

2 H2O(l)  --> 2 H2(g) + O2(g)

Note that this reaction creates twice the amount of hydrogen than oxygen molecules. If the temperature and pressure for both are the same, you can expect to get twice the volume of hydrogen to oxygen gas (This relationship between pressure, temperature, and volume is the Ideal Gas Law principle.)

This is the idea behind vehicles that run on sunlight and water.  They use a solar panel (instead of a 9V battery) to break apart the hydrogen and oxygen and store them in separate tanks, then run them both back together through a fuel cell, which captures the energy (released when the hydrogen and oxygen recombine into water) and turns the car's motor. Cool, isn't it?

Note: We're going to focus on Alternative Energy in Unit 12 and create all sorts of various energy sources including how to make your own solar battery, heat engine, solar & fuel cell vehicles (as described above), and more!

Exercises

  1. Why are bubbles forming?
  2. Did bubbles form at both wires, or only one? What kind of bubbles are they?
  3. What would happen if you did this experiment with plain water? Would it work? Why or why not?
  4. Which terminal (positive or negative) produced the hydrogen gas?
  5. Did the reaction create more hydrogen or more oxygen?

[/am4show]



 


If you have a Fun Fly Stick, then pull it out and watch the video below. If not, don't worry - you can do most of these experiments with a charged balloon (one that you've rubbed on your hair). Let' play with a more static electricity experiments, including making things move, roll, spin, chime, light up, wiggle and more using  static electricity! [am4show have='p8;p9;p97;p58;' guest_error='Guest error message' user_error='User error message' ] Materials:
  • sheet of paper
  • two empty, clean soup cans
  • aluminum foil
  • long straight pin
  • three film canisters (or M&M containers or small plastic bottles)
  • penny
  • neon bulb (optional)
  • small styrofoam ball or single packing peanut
  • fishing line or thread
  • chopstick
  • foam cup
  • small aluminum pie tins or make your own from aluminum foil
  • hot glue with glue sticks
  • Fun Fly Stick (also called "Wonder Fly Stick")
This video show you how to get the most out of your Fun Fly Stick. If you don't have a Fly Stick, simply use an inflated balloon that you've rubbed on your head. In the video, the Electrostatic Lab is mounted on a foam meat tray I found at the grocery store.
  Download Student Worksheet & Exercises The triboelectric series is a list that ranks different materials according to how they lose or gain electrons. Near the top of the list are materials that take on a positive charge, such as air, human skin, glass, rabbit fur, human hair, wool, silk, and aluminum. Near the bottom of the list are materials that take on a negative charge, such as amber, rubber balloons, copper, brass, gold, cellophane tape, Teflon, and silicone rubber. When you turn on your Fun Fly Stick (or rub your head with a balloon), one end of the Fun Fly Stick takes on a positive charge and the other end holds the negative charge. When you rub your head with a balloon, the hair takes on a positive charge and the balloon takes on a negative charge. When you scuff along the carpet, you build up a static charge (of electrons). Your socks insulate you from the ground, and the electrons can’t cross your sock-barrier and zip back into the ground. When you touch someone (or something grounded, like a metal faucet), the electrons jump from you and complete the circuit, sending the electrons from you to them (or it). Exercises
  1. What is common throughout all these experiments that make them work?
  2. What makes the neon bulb light up? What else would work besides a neon bulb?
  3. Does it matter how far apart the soup cans are?
  4. Why does the foil ball go back and forth between the two cans?
  5.  Why do the pans take on the same charge as the Fly Stick?
  6.  When sticking a sheet of paper to the wall, does it matter how long you charge the paper for?
  7.  Draw a diagram to explain how the electrostatic motor works. Label each part and show where the charges are and how they make the rotor turn.
[/am4show]  

 

This is a super-cool and ultra-simple circuit experiment that shows you how a CdS (cadmium sulfide cell) works. A CdS cell is a special kind of resistor called a photoresistor, which is sensitive to light.


A resistor limits the amount of current (electricity) that flows through it, and since this one is light-sensitive, it will allow different amounts of current through depends on how much light it “sees”.


Photoresistors are very inexpensive light detectors, and you’ll find them in cameras, street lights, clock radios, robotics, and more. We’re going to play with one and find out how to detect light using a simple series circuit.


Materials:


  • AA battery case with batteries
  • one CdS cell
  • three alligator wires
  • LED (any color and type)

[am4show have=’p8;p9;p20;p47;p108;p76;p89;p97;p99;’ guest_error=’Guest error message’ user_error=’User error message’ ]



 


Download Student Worksheet & Exercises


Exercises


  1. How is a CdS cell like a switch? How is it not like a switch?
  2. When is the LED the brightest?
  3. How could you use this as a burglar alarm?

[/am4show]


By controlling how and when a circuit is triggered, you can easily turn a simple circuit into a burglar alarm – something that alerts you when something happens. By sensing light, movement, weight, liquids, even electric fields, you can trigger LEDs to light and buzzers to sound. Your room will never be the same.


Switches control the flow of electricity through a circuit. There are different kinds of switches. NC (normally closed) switches keep the current flowing until you engage the switch. The SPST and DPDT switches are NO (normally open) switches.


The pressure sensor we’re building is small, and it requires a fair amount of pressure to activate. Pressure is force (like weight) over a given area (like a footprint). If you weighed 200 pounds, and your footprint averaged 10” long and 2” wide, you’d exert about 5 psi (pounds per square inch) per foot.


However, if you walked around on stilts indeed of feet, and the ‘footprint’ of each stilt averaged 1” on each side, you’d now exert 100 psi per foot. Why such a difference?


The secret is in the area of the footprint. In our example, your foot is about 20 square inches, but the area of each stilt was only 1 square inch. Since you haven’t changed your weight, you’re still pushing down with 200 pounds, only in the second case, you’re pressing the same weight into a much smaller spot… and hence the pressure applied to the smaller area shoots up by a factor of 20.


So how do we use pressure in this experiment? When you squeeze the foam, the light bulb lights up! It’s ideal for under a doormat or carpet rug where lots of weight will trigger it.


[am4show have=’p8;p9;p20;p47;p108;p76;’ guest_error=’Guest error message’ user_error=’User error message’ ]


Here’s what you need:


  • thin sponge or foam square (about 1″ square)
  • AA battery case
  • 2 AA batteries
  • 3 alligator clip wires
  • 2 large paper clips
  • scissors
  • aluminum foil
  • buzzer or LED


Download Student Worksheet & Exercises


Troubleshooting: There are a few problem areas to watch out for when building this sensor. First, make sure the hole in your foam is big enough to stick a finger (or thumb) easily through. The foam keeps the foil apart until stepped on, then it squishes together to allow the foil to make contact through the hole.


The second potential problem is if the switch doesn’t turn the buzzer off. If this happens, it means you’re bypassing the switch entirely and keeping the circuit in the constant ON position. Check the two foil squares – are they touching around the outside edges? Lastly, make sure your foam is the kind that pops back into shape when released. (Thin sponges can work in a pinch.)


What’s happening? You’ve made a switch, only this one is triggered by squeezing it. If you’re using the special black foam without the hole, it works because the foam conducts more electricity when squished together, and less when it’s at the normal shape.


First, the special black foam is conducting some (but not enough) electricity when you squeeze it. It’s just the nature of the black foam included with the materials kit. Second, when you squeeze it, you’re getting the two foil squares to touch through the hole, and this is what really does it for your LED. When you release it, the foil spreads apart again because they are on opposite sides of the foam square.


Bonus Idea: Stick just the sensor under a rug and run longer wires from the sensor to your room. When someone comes down the hallway, they’ll trigger the sensor and alert you before they get there!


Exercises


  1. How does this sensor work?
  2. What makes this an NO switch?
  3.  How can you use both the trip wire and the pressure sensor in the same circuit? Draw it out here:

[/am4show]