When you drop a ball, it falls 16 feet the first second you release it. If you throw the ball horizontally, it will also fall 16 feet in the first second, even though it is moving horizontally… it moves both away from you and down toward the ground. Think about a bullet shot horizontally. It travels a lot faster than you can throw (about 2,000 feet each second). But it will still fall 16 feet during that first second. Gravity pulls on all objects (like the ball and the bullet) the same way, no matter how fast they go.


What if you shoot the bullet faster and faster? Gravity will still pull it down 16 feet during the first second, but remember that the surface of the Earth is round. Can you imagine how fast we’d need to shoot the bullet so that when the bullet falls 16 feet in one second, the Earth curves away from the bullet at the same rate of 16 feet each second?


Answer: that bullet needs to travel nearly 5 miles per second. (This is also how satellites stay in orbit – going just fast enough to keep from falling inward and not too fast that they fly out of orbit.)


Catapults are a nifty way to fire things both vertically and horizontally, so you can get a better feel for how objects fly through the air. Notice when you launch how the balls always fall at the same rate – about 16 feet in the first second.  What about the energy involved?


When you fire a ball through the air, it moves both vertically and horizontally (up and out). When you toss it upwards, you store the (moving) kinetic energy as potential energy, which transfers back to kinetic when it comes whizzing back down. If you throw it only outwards, the energy is completely lost due to friction.


The higher you pitch a ball upwards, the more energy you store in it. Instead of breaking our arms trying to toss balls into the air, let’s make a simple machine that will do it for us. This catapult uses elastic kinetic energy stored in the rubber band to launch the ball skyward.


[am4show have=’p8;p9;p11;p38;p92;p15;p42;p151;p75;p85;p88;’ guest_error=’Guest error message’ user_error=’User error message’ ]


Here’s what you need:


  • 9 tongue-depressor size popsicle sticks
  • four rubber bands
  • one plastic spoon
  • ping pong ball or wadded up ball of aluminum foil (or something lightweight to toss, like a marshmallow)
  • hot glue gun with glue sticks


 
Download Student Worksheet & Exercises


catapult1What’s going on? We’re utilizing the “springy-ness” in the popsicle stick to fling the ball around the room. By moving the fulcrum as far from the ball launch pad as possible (on the catapult), you get a greater distance to press down and release the projectile. (The fulcrum is the spot where a lever moves one way or the other – for example, the horizontal bar on which a seesaw “sees” and “saws”.)


Troubleshooting: These simple catapults are quick and easy versions of the real thing, using a fulcrum instead of a spring so kids don’t knock their teeth out. After making the first model, encourage kids to make their own “improvements” by handing them additional popsicle sticks, spoons, and glue sticks (for the hot glue guns).


If they get stuck, you can show them how to vary their models: glue a second (or third, fourth, or fifth) spoon onto the first spoon for multi-ammunition throws, increase the number of popsicle sticks in the fulcrum from 7 to 13 (or more?), and/or use additional sticks to lengthen the lever arm. Use ping pong balls as ammo and build a fort from sheets, pillows, and the backside of the couch.



Want to make a more advanced catapult? 

This catapult requires a little more time, materials, and effort than the catapult design above, but it’s totally worth it. This device is what most folks think of when you say ‘catapult’. I’ve shown you how to make a small model – how large can you make yours?


This project lends itself well to taking data and graphing your results: you and your child can jot down the distance traveled along with time aloft with further calculations for high school students for velocity and acceleration. My university students would also calculate statistics, percent error, and more. My students also mapped out the material properties of the ‘cantilevered beam’ as well as model the popsicle stick as a spring (to determine the spring constant (k) for your calculations from Hooke’s Law). You can take this project as far as you want, depending on the interest and ability of kids.


Materials:


  • plastic spoon
  • 14 popsicle sticks
  • 3 rubber bands
  • wooden clothespin
  • straw
  • wood skewer or dowel
  • scissors
  • hot glue gun


Try different ball weights (ping pong, foil crumpled into a ball, whiffle balls, marshmallows, etc) and chart out the results: make a data table that shows what ball you tried and how far it went. You can also use a stopwatch to time how long your ball was in the air.


You can also graph your results: make a chart where you plot each data point on a graph that has distance on the vertical axis and time on the horizontal axis.


Advanced Teaching Tips: For high school and college-level physics classes, you can easily incorporate these launchers into your calculations for projectile motion. Offer students different ball weights (ping pong, foil crumpled into a ball, and whiffle balls work well) and chart out the results.


Exercises Answer the questions below:


  1. How is gravity related to kinetic energy?
    1. Gravity creates kinetic energy in all systems.
    2. Gravity explains how potential energy is created.
    3. Gravity pulls an object and helps its potential energy convert into kinetic energy.
    4. None of the above
  2. If you could use your catapult to launch your ball of foil into orbit, how high would it have to go?
    1. Above the atmosphere
    2. High enough to slingshot around the moon
    3. High enough so that when it falls, the earth curves away from it
    4. High enough so that it is suspended in empty space
  3. Where is potential energy the greatest on the catapult?

[/am4show]


Have a question ?

Tell us what you're thinking...