This is a recording of a recent live teleclass I did with thousands of kids from all over the world. I’ve included it here so you can participate and learn, too!


Soar, zoom, fly, twirl, and gyrate with these amazing hands-on classes which investigate the world of flight. Students created flying contraptions from paper airplanes and hangliders to kites! Topics we will cover include: air pressure, flight dynamics, and Bernoulli’s principle.


Materials:


  • 5 sheets of 8.5×11” paper
  • 2 index cards
  • 2 straws
  • 2 small paper clips
  • Scissors, tape
  • Optional: ping pong ball and a small funnel

[am4show have=’p8;p9;p11;p38;p93;’ guest_error=’Guest error message’ user_error=’User error message’ ]



Key Concepts

While the kids are playing with the experiments see if you can get them to notice these important ideas. When they can explain these concepts back to you (in their own words or with demonstrations), you’ll know that they’ve mastered the lesson.


  1. Air pressure is all around us. Air pushes downward and creates pressure on all things.
  2. Air pressure changes all the time.
  3. Higher pressure always pushes.
  4. The faster air travels over a surface, the less time it has to push down on that surface and create pressure. Fast moving air creates low pressure regions. (Bernoulli’s Law).
  5. The four fundamental forces on an airplane are lift, weight, thrust, and drag.

What’s Going On?

There’s air surrounding us everywhere, all at the same pressure of 14.7 pounds per square inch (psi). You feel the same force on your skin whether you’re on the ceiling or the floor, under the bed or in the shower.


An interesting thing happens when you change a pocket of air pressure – things start to move. This difference in pressure causes movement that creates winds, tornadoes, airplanes to fly, and some of the experiments we’re about to do together.


An important thing to remember is that higher pressure always pushes stuff around. While lower pressure does not “pull,” we think of higher pressure as a “push”. The higher pressure inside a balloon pushes outward and keeps the balloon in a round shape.


Weird stuff happens with fast-moving air particles. When air moves quickly, it doesn’t have time to push on a nearby surface, such as an airplane wing. The air just zooms by, barely having time to touch the surface, so not much air weight gets put on the surface. Less weight means less force on the area. You can think of “pressure” as force on a given area or surface. Therefore, a less or lower pressure region occurs wherever there is fast air movement.


There’s a reason airplane wings are rounded on top and flat on the bottom. The rounded top wing surface makes the air rush by faster than if it were flat. When you put your thumb over the end of a gardening hose, the water comes out faster when you decrease the size of the opening. The same thing happens to the air above the wing: the wind rushing by the wing has less space now that the wing is curved, so it zips over the wing faster, and creates a lower pressure area than the air at the bottom of the wing.


The Wright brothers figured how to keep an airplane stable in flight by trying out a new idea, watching it carefully, and changing only one thing at a time to improve it. One of their biggest problems was finding a method for generating enough speed to get off the ground. They also took an airfoil (a fancy word for “airplane wing”), turned it sideways, and rotated it around quickly to produce the first real propeller that could generate an efficient amount of thrust to fly an aircraft.  Before the Wright brothers perfected the airfoil, people had been using the same “screw” design created by Archimedes in 250 BC.  This twist in the propeller was such a superior design that modern propellers are only 5% more efficient than those created a hundred years ago by the two brilliant Wright brothers.


Questions to Ask

When you’ve worked through most of the experiments ask your kids these questions and see how they do:


  1. Higher pressure does which? (a) pushes (b) pulls (c) decreases temperature (d) meows (e) causes winds, storms, and airplanes to fly
  2. The tips on the edge of a paper airplane wing provide more lift by: (a) flapping a lot
    (b) destroying wingtip vortices that kill lift (c) getting stuck in a tree more easily (d) decreasing speed
  3. In the ping pong ball and funnel experiment, the ball stayed in the funnel was because:         (a) you couldn’t blow hard enough (b) you glued it into the funnel (c) the ball had a hole in it  (d) the fast blowing caused a low-pressure region around the ball, causing the surrounding atmospheric pressure to be a higher pressure, thus pushing the ball into the funnel
  4. If your plane takes a nose dive, you should try (a) changing the elevators by pinching the edges (b) change the dihedral angle (c) change how you throw it (d) all of the above
  5. What are the four forces that act on every airplane in flight?
  6. Draw a quick sketch of your plane viewed from the front with a positive dihedral.
  7. If you were designing your own “Flying Paper Machine Kit”, what would be inside the box?
  8. What’s the one thing you need to remember about higher pressure?
  9. What keep an airplane from falling?
  10. Where is the low pressure area on an airplane wing?

Answers:


1 (a, e) 2 (b) 3 (d) 4 (d) 5 (lift, weight, thrust, drag) 8 (higher pressure pushes) 9 (lift) 10 (top surface)


[/am4show]


This is a recording of a recent live teleclass I did with thousands of kids from all over the world. I've included it here so you can participate and learn, too! Blast your imagination with this super-popular class on rocketry! Kids learn about fin design, hybrid and solid-state rocketry, and how rockets make it into space without falling out of orbit. This class is taught by a real live rocket scientist (me!). We'll launch rockets during the class, too! [am4show have='p8;p9;p11;p38;p95;' guest_error='Guest error message' user_error='User error message' ] Materials:
  • straw
  • paperclip
  • rubber band
  • index card
  • popsicle stick
  • scissors
  • masking tape
  • water
  • alka-seltzer tablets (generic brands work fine)
  • film canister or small container with tight-fitting lid
  • OPTIONAL: Small toy car
Below you will find an older version of the same teleclass. We are making a different experiment during class, so the materials you will need are a little different: Materials:
  • 2L soda bottle
  • 1/2" PVC pipe
  • duct tape
  • pen or pencil
  • index cards
  • sheets of paper
  • bicycle inner tube

Key Concepts

A rocket has a few parts different from an airplane. One of the main differences is the absence of wings. Rockets utilize fins, which help steer the rocket, while airplanes use wings to generate lift. Rocket fins are more like the rudder of an airplane than the wings. Another difference is the how rockets get their speed. Airplanes generate thrust from a rotating blade, whereas rockets get their movement by squeezing down a high-energy gaseous flow and squeezing it out a tiny exit hole. If you've ever used a garden hose, you already know how to make the water stream out faster by placing your thumb over the end of the hose. You're decreasing the amount of area the water has to exit the hose, but there's still the same amount of water flowing out, so the water compensates by increasing its velocity. This is the secret to rocket nozzles - squeeze the flow down and out a small exit hole to increase velocity. The rockets we're about to build get their thrust by generating enough pressure and releasing that pressure very quickly. You will generate pressure both by pumping and by chemical reaction, which generates gaseous products.

What's Going On?

For every action, there is equal and opposite reaction. If flames shoot out of the rocket downwards, the rocket itself will soar upwards. It's the same thing if you blow up a balloon and let it go-the air inside the balloon goes to the left, and the balloon zips off to the right (at least, initially). Your rocket generates a high pressure by squeezing the air into a very small space and using Bernoulli's Principles in action! As you stomp on the rocket, the air pressure leaves the bottle pretty quickly, pushing the paper rocket out of the way as it zooms out of the tube. By narrowing the exit diameter, you allow the air to speed up as it exits, creating a higher launch for your rocket. You can modify your rocket body design. Add more fins, tilt the fins at a angle, or try no fins at all! You can add a more steeply slanted  nose. You can cut the rocket body in half or make it twice as long.  There's so many things you can test out, change, or modify with this simple activity! You can also add canards (glider-type wings) to either side of the rocket body right under the nose and turn it into a glider when it starts to fall back to Earth!

Questions to Ask

  1. Does it matter how many fins you use?
  2. What happens if there's an air leak in the system?
  3. How can you make the rocket fly even higher? Name three different ways.
  4. Is the center of pressure before or aft of the center of gravity on your rocket?
  5. For stable flight, how many fins do you ideally need?
  6. How can you make the rocket spin as it launches?
[/am4show]

This lesson may give you a sinking sensation but don’t worry about it. It’s only because we’re talking about gravity. You can’t go anywhere without gravity. Even though we deal with gravity on a constant basis, there are several misconceptions about it. Let’s get to an experiment right away and I’ll show you what I mean.

If I drop a ping pong ball and a golf ball from the same height, which one hits the ground first? How about a bowling ball and a marble?

Here's what you need:

[am4show have='p8;p9;p11;p38;p72;p92;' guest_error='Guest error message' user_error='User error message' ]

  • ping pong ball
  • golf ball
  • you

Download Student Worksheet & Exercises

For this experiment, you'll need:

Two objects of different weights. A marble and a golf ball, or a tennis ball and a penny for example.
A sharp eye
A partner

1. Take a careful look at both objects and make a prediction about which object will hit the ground first if they are dropped from the same height.

2. Test your prediction. Hold both objects at the same height. Make sure the bottom of both objects are the same distance from the floor.

3. Let them go as close to the same time as possible. Sometimes it's helpful to roll them off a book.

4. Watch carefully. Which hits the ground first, the heavier one or the lighter one? Try it a couple of times and watch carefully. It will be a little easier for the person who isn’t dropping them to see what happens.

What you should see is that both objects hit the ground at the same time! Gravity accelerates both items equally and they hit the ground at the same time. Any two objects will do this, a brick and a Buick, a flower and a fish, a kumquat and a cow!

“But,” I hear you saying, “if I drop a feather and a flounder, the flounder will hit first every time!” Ok, you got me there. There is one thing that will change the results and that is air resistance.

The bigger, lighter and fluffier something is, the more air resistance can effect it and so it will fall more slowly. Air resistance is a type of friction which we will be talking about later. In fact, if you removed air resistance, a feather and a flounder would hit the ground at the same time!!!

Where can you remove air resistance? The moon!!! One of the Apollo missions actually did this (well, they didn’t use a flounder they used a hammer). An astronaut dropped a feather and a hammer at the same time and indeed, both fell at the same rate of speed and hit the surface of the moon at the same time.


Ask someone this question: Which will hit the ground first, if dropped from the same height, a bowling ball or a tennis ball? Most will say the bowling ball. In fact, if you asked yourself that question 5 minutes ago, would you have gotten it right? It’s conventional wisdom to think that the heavier object falls faster. Unfortunately, conventional wisdom isn’t always right. Gravity accelerates all things equally. In other words, gravity makes all things speed up or slow down at the same rate. We will be discussing acceleration more in a later lesson. If you would like more details on the math of this, it will be at the end of this lesson in the Deeper Lesson section.

This photo shows a statue of Aristotle, a famous Greek philosopher who contributed many ideas to science.

This is a great example of why the scientific method is such a cool thing. Many, many years ago, there was a man of great knowledge and wisdom named Aristotle. Whatever he said, most people believed to be true. The trouble was he didn’t test everything that he said. One of his statements was that objects with greater weight fall faster than objects with less weight. Everyone believed that this was true.

Hundreds of years later Galileo came along and said “Ya know...that doesn’t seem to work that way. I’m going to test it” The story goes that Galileo grabbed a melon and an orange and went to the top of the Leaning Tower of Pisa. He said, “Look out below!” and dropped them! By doing that, he showed that objects fall at the same rate of speed no matter what their size.

It is true that it was Galileo who “proved” that gravity accelerates all things equally no matter what their weight, but there is no real evidence that he actually used the Leaning Tower of Pisa to do it.

Advanced Students: Download your Gravity Lab here.

Exercises

  1. What did you notice from your data? Did heavier or lighter objects fall faster? Did more massive objects or smaller objects fall faster? What characteristic seemed to matter the most?
  2. Is gravity a two-way force, like the attractive-repulsive forces of a magnet?
  3. If I were to drop a bowling ball and a balloon filled with a gas six times heavier than air (sulfur hexafluoride SF6) and inflated to the exact size of the bowling ball from my roof, which will strike the ground first?

[/am4show]


If I toss a ball horizontally at the exact same instant that I drop another one from my other hand, which one reaches the ground first? For this experiment, you need: [am4show have=’p8;p9;p11;p38;p72;p92;’ guest_error=’Guest error message’ user_error=’User error message’ ]


  • 2 rulers or paint sticks. Any thing wide and flat
  • 2 coins or poker chips
  • A sharp eye and ear
  • A partner is good for this one too


 


Download Student Worksheet & Exercises
1. Place one of the rulers flat so that it is diagonal across the edge of a table with half the ruler on the table and half sticking off.


2. Place one coin on the table, just in front of the ruler and just behind the edge of the table. Place the other coin on the ruler on the side where it’s off the table.


3. Put your finger right in the middle of the ruler on the table so that you are holding it in such a way that it can spin a bit under your finger. Now with the other ruler you are going to smack the end of the first ruler so that the first ruler pushes the coin off the desk and the coin that’s resting on the ruler falls to the ground.


4. Now, before you smack the ruler, make a prediction. Will the coin that falls straight down or the coin that is flying forward hit the ground first?


5. Try it. Do the test and look and listen carefully to what happens. It’s almost better to use your ears here than your eyes. Do it a couple of times.


Are you surprised by what you see and/or hear? Most people are. It’s not what you would expect.


The coins hit the ground at the SAME time. Is that odd or what?


bullet


Did you read the first sentence at the top of this lab? What do you think will happen?


The balls will hit the ground at the exact SAME time.


Gravity doesn’t care if something is moving horizontally or not. Everything falls toward the center of the Earth at the same rate.


Let me give you a better example: A bullet fired parallel to the ground from a gun and a bullet dropped from the same height at the same time will both hit the ground at the same time. Even though the one fired lands a mile away! It seems incredible, but it’s true.


Gravity doesn’t care what size something is or whether or not it is moving, Gravity treats all things equally and accelerates them the same.


Notice, that I say gravity accelerates all things equally, not gravity pulls on all things equally. Gravity does pull harder on some things than on other things. This is why I weigh more than a dog. I am made of more stuff (I have more atoms) than the average dog, so gravity pulls on me more.


Weight is nothing more than a measure of how much gravity is pulling on you. This is why you can be “weightless” on a scale in space. You are still made of stuff, but there’s a balance of the gravity that is pulling on you and the outward force due to the acceleration since you’re moving in a circle (which you do in order to remain in orbit), so it feels like you have no weight.


The larger a body is, the more gravitational pull or the larger a gravitational field it will have.


The Moon has a fairly small gravitational field (if you weighed 100 pounds on Earth, you’d only be 17 pounds on the Moon), the Earth’s field is fairly large and the Sun has a HUGE gravitational field (if you weighed 100 pounds on Earth, you’d weigh 2,500 pounds on the sun!).


As a matter of fact, both the dog and I both have gravitational fields! Since we are both bodies of mass we have a gravitational field which will pull things towards us. All bodies have a gravitational field. However, my mass is sooooo small that the gravitational field I have is miniscule. Something has to be very massive before it has a gravitational field that noticeably attracts another body.


So what’s the measurement for how much stuff you’re made of? Mass. Mass is basically a weightless measure of how much matter makes you, you. A hamster is made of a fairly small amount of stuff so she has a small mass. I am made of more stuff, so my mass is greater than the hamster’s. Your house is made of even more stuff so its mass is greater still.


So, here’s a question. If you are “weightless” in space, do you still have mass? Yes, the amount of stuff you’re made of is the same on Earth as it is in your space ship. Mass does not change but since weight is a measure for how much gravity is pulling on you, weight will change.


Did you notice that I put weightless in quotation marks? Wonder why?


Weightlessness is a myth! Believe it or not, one is never weightless. A person can be pretty close to weightless in very deep space but the astronauts in a space ship actually do have a bit of weight.


Think about it for a second. If a space ship is orbiting the Earth what is it doing? It’s constantly falling! If it wasn’t moving forward at 10’s of thousands of miles an hour it would hit the Earth. It’s moving fast enough to fall around the curvature of the Earth as it falls but, indeed, it’s falling as the Earth’s gravity is pulling it to us.


Otherwise the ship would float out to space. So what is the astronaut doing? She’s falling too! The astronaut and the space ship are both falling to the Earth at the same rate of speed and so the astronaut feels weightless in space. If you were in an elevator and the cable snapped, you and the elevator would fall to the Earth at the same rate of speed. You’d feel weightless! (Don’t try this at home!)


Exercises


  1. True or false? Gravity pulls on all things equally.
  2. True or false? Gravity accelerates all things equally.
  3. In your own words, why do the coins hit the ground at the same time? Is this what you’d expect to happen on Mars?

The rest of this experiment is for advanced students…[/am4show]


[am4show have=’p9;p38;’ guest_error=’Guest error message’ user_error=’User error message’ ]


For advanced students:

Either now, or at some point in the future you may ask yourself this question, “How can gravity pull harder (put more force on some things, like bowling balls) and yet accelerate all things equally?” When we get into Newton’s laws in a few lessons you’ll realize that doesn’t make any sense at all. More force equals more acceleration is basically Newton’s Second law.


Well, I don’t want to take too much time here since this is a little deeper then we need to go but I do feel some explanation is in order to avoid future confusion. The explanation for this is inertia. When we get to Newton’s First law we will discuss inertia. Inertia is basically how much force is needed to get something to move or stop moving.


Now, lets get back to gravity and acceleration. Let’s take a look at a bowling ball and a golf ball. Gravity puts more force on the bowling ball than on the golf ball. Soooo the bowling ball should accelerate faster since there’s more force on it. However, the bowling ball is heavier soooo it is harder to get it moving. Vice versa, the golf ball has less force pulling on it but it’s easier to get moving. Do you see it? The force and inertia thing equal out so that all things accelerate due to gravity at the same rate of speed!


Gravity had to be one of the first scientific discoveries. Whoever the first guy was to drop a rock on his foot, probably realized that things fall down! However, even though we have known about gravity for many many years, it still remains one of the most elusive mysteries of science. At this point, nobody knows what makes things move towards a body of mass.


Why did the rock drop towards the Earth and on that guy’s foot? We still don’t know. We know that it does, but we don’t know what causes a gravitational attraction between objects. Gravity is also a very weak force. Compared to magnetic forces and electrostatic forces, the gravitational force is extremely weak. How come? No one knows. A large amount of amazing brain power is being used to discover these mysteries of gravity. Maybe it will be you who figures this out!


Advanced students: Download your Forever Falling Lab here.


[/am4show]


You have just taken in a nice bunch of information about the wild world of gravity. This next section is for advanced students, who want to go even deeper. There’s a lot of great stuff here but there’s a lot of math as well. If you’re not a math person, feel free to pass this up. You’ll still have a nice understanding of the concept. However, I’d recommend giving it a try. There are some fun things to do and if you’re not careful, you might just end up enjoying it!


Here’s what you need:


[am4show have=’p9;p38;p92;’ guest_error=’Guest error message’ user_error=’User error message’ ]


  • ball
  • pencil, paper
  • stopwatch
  • yardstick or tape measure


 
Download Student Worksheet & Exercises


Okay, let’s see where we can go here. Gravity accelerates all things equally…what does that mean? All things accelerate at 32 feet per second squared due to gravity. In metric, it accelerates 9.8 meters per second squared.


What that means is, every second something falls, its speed increases by 32 feet/second or 9.8 meters/second. Believe it or not, that’s about 22 miles per hour!! Gravity will accelerate something from 0 to 60 mph in about 3 seconds. Faster then all but the fastest sports cars!


So what is acceleration anyway? Well speed is the amount of distance something travels in a certain amount of time. Five miles per hour, for example, tells you that something can travel five miles in an hour. Acceleration is how much the speed changes over time. So acceleration would be miles per hour per hour or feet per second per second.


Acceleration is a rate of change of speed or, in other words, how fast is the speed is changing. Feet per second per second is the same as ft/s/s which is the same as ft/s². (I told you we were going deeper!) Let’s say you’re riding your bicycle at a positive acceleration (your getting faster) of 5 ft/s².


That means in 1 second you’re moving at a speed of 5 ft/s.


After 2 seconds you’re moving at a speed of 10 ft/s.


After 3 seconds you’re now clipping along at 15 ft/s (about 10 mph).


gravity1So you can see that as long as you accelerate, you will be getting faster and faster. The formula for this is v=at where v is velocity, a is acceleration and t is time. (We will be doing more with acceleration in a future lesson.)


If we want to find out how fast something is going after it has been dropped, we use the formula v=gt. The letter “v” stands for velocity (which basically means speed.) “g” stands for the gravitational constant and “t” stands for time.


If we want to find out how fast a golf ball is dropping after it falls for 3 seconds we multiply 3 seconds by 32 feet/second squared and that equals 96 feet/second. So, if I dropped a golf ball off a building, it would be going 96 feet per second after 3 seconds of dropping.


The formula looks like this when we fill in the numbers:


v=3s x 32 ft/s²


If we do more math, we’ll see that after one second something will be item7going 32 ft/s, after 2 seconds it will be going 64 ft/s, after 3 seconds 96 ft/s after 4 seconds 128 ft/s. Get it? Anything dropped will be going that speed after that many seconds because gravity accelerates all things equally (air resistance will effect these numbers so you won’t get exactly the numbers in practice that you will mathematically).


All right, lets go even deeper. We now know how to calculate how fast something will be going if it is dropped, but what happens if we throw it up? Well, which way does gravity go? Down right? Gravity accelerates all things equally so, gravity will slow things down as they travel up by 32 ft/s². If a ball is thrown up at 64 ft/s how long will it travel upwards? Well, since it is negatively accelerating (in physics there’s no such thing as deceleration) after the first second the ball will be traveling at 32 ft/s and after 2 seconds the ball will come to a stop, turn around in midair, and begin to accelerate downwards at 32 ft/s². Using this, you can tell how fast you can throw by using nothing more then a timer. Let’s try it.


For this experiment, you will need:


– A ball (a tennis ball or baseball would be perfect)


– A stopwatch


– Pencil and paper


– A friend


– A calculator


1. Go outside and pick one person to be the thrower and another to be the timer.
2. Have the timer say “Ready, Set, Go!” and at go he or she should start the stopwatch.
3. When the timer says go, the thrower should toss the ball as high as he or she can.
4. The timer should stop the stopwatch when the ball hits the ground.
5. Write down the time that the ball was in the air.
6. Let each person take a couple of turns as timer and thrower.
7. Now, come back inside and do a bit of math.


Ok, let’s see how you did. Let’s say you threw the ball into the air and it took 3 seconds to hit the ground. The first thing you have to do is divide 3 in half. Why? Because your ball traveled 1.5 seconds up and 1.5 seconds down! (By the way, this isn’t completely accurate because of two things. One, air resistance and two, the ball falls a little father then it rises because of the height of the thrower.) Now, take your formula and figure out the speed of the throw.


v=gt,


so v=32 ft/s² x 1.5 sec or


v = 48 ft/s.


So, if that’s how fast it left your hand…how fast was it going when it hit the ground? Yup, 48 ft/s. It has to be going the same speed because it had just as much time to speed up as it had to slow down, 1.5 seconds. Try that with your time and see how fast your throw was.


Ok, hold your breath, just a little deeper now. Let’s talk about distance. If something starts from rest you can tell how far it drops by how long it has dropped. This formula is d=1/2gt² or distance equals one half the gravitational constant multiplied by time squared. Let’s try it. If I drop a ball and it drops 3 seconds how far has it dropped?


d=1/2 32ft/s² x (3s)² or


d = 16 ft/s x 9s² or


d=144 ft So it has dropped 144 ft.


Now try this with your time. What’s the first thing you have to do? Divide your time in half again, right. It took your ball half the time to go up and half the time to come down. Now plug your numbers into 1/2gt² and find out how high you threw your ball! Is Major League Baseball in your future?!


Advanced students: Download your Fast Ball Lab here.


Exercises 


  1. Is gravity a speed, velocity, or acceleration?
  2. Does gravity pull equally on all things?
  3. Does gravity accelerate all objects equally?
  4. How is acceleration different from speed and velocity?

[/am4show]